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Cancer-Immune Interaction

Cancer is a genetic disease. Tumor cell growth is initiated and driven
by somatic DNA mutations.

These somatic mutations can be recognized by immune system.

Only a small proportion of somatic mutations may be recognized by the
immune system, neoantigen.
This is a stochastic event. The more somatic mutations the tumor cells
carry, the more likely they are recognized by the immune system.

After initial attack on the tumor cells, the immune system get
“exhausted” through negative regulatory pathways, also known as
check points.

Check-point inhibitor remove such check points, and thus revive
immune cells’ attack on tumor cells.

Chan et al. (2017) Nature 541: 321-330
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Cancer-Immune Interaction
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Cancer immunoediting
A concept that describes the 
complex interactions that 
occur between a developing 
tumour and the immune 
system, in which immune cells 
not only protect the host, but 
also sculpt or edit the 
immunogenicity of the tumour.

The analysis of omics data in the context of cancer 
immunology can be viewed as a two-step procedure 
(FIG. 2). Following pre-processing of the raw data, which 
includes evaluation of the quality of data and removal 
of artefacts22, the first step is the genomic analysis of 

omics data, focusing primarily on the tumour itself. 
A plethora of computational tools for analysing  cancer 
genomes have been developed and are being continu-
ously improved23. This step includes tools for the identi-
fication of SNPs, small insertions and deletions (indels), 
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Check-point inhibitors

tumours in more than half of people with advanced melanoma receiving 
the treatment, with 20% experiencing complete remission. 

A newer form of T-cell transfer promises to broaden its reach to 
other cancers, by engineering extracted T cells to express an artificial 
tumour-targeting receptor called a chimaeric antigen receptor (see 
‘Immune boost’). A trial using T cells engineered to target B cells wiped 
out cancer in 14 of 16 people with acute leukaemia (M. L. Davila et al. 
Sci. Transl. Med. 6, 224ra25; 2014). 

But technical challenges have limited the spread of T-cell transfer 
therapies. Only a handful of academic medical centres have performed 
the procedure so far. “After our initial results, we were besieged with 
melanoma patients,” says Rosenberg. “We couldn’t possibly treat all 
the patients sent to us.”

Since those early days, researchers have simplified and standardized 
protocols. That, plus the remarkable results in leukaemia, has lured 
industry investors. Novartis, based in Basel, Switzerland, has bought a 
facility in New Jersey to process T cells extracted from patients around 
the United States. The facility will be key to the company’s plans to 
expand its clinical trials to more sites this year. Smaller firms are fol-
lowing suit. In early 2015, Kite Pharmaceuticals in Santa Monica, 
California, hopes to launch a multicentre trial of adoptive T-cell trans-
fer in a form of lymphoma that kills around 37% of patients within five 
years of diagnosis. 

THE TRUE TARGET
Another big challenge for adoptive T-cell transfer is to broaden its 
reach by finding new molecular targets that will guide T cells to specific 
tumour types while sparing healthy cells. The approach works well in 
leukaemia and other cancers that affect B cells, another class of white 
blood cell, because researchers can engineer T cells to target a protein 
called CD19, which is found only on B cells. Although the treatment 
wipes out healthy B cells in addition to the cancerous ones, patients can 
tolerate that side effect relatively easily. But finding a similar target for 

solid tumours, which are less uniform than liquid tumours, has been 
difficult. “It’s a major limiting step,” says Ribas. “We’re all excited about 
CD19, but it’s not clear what the next target will be.”

Researchers are mining growing databases of gene expression to 
find the best candidates. But firing up immune responses to specific 
proteins can be dangerous: a few years ago, four patients died in tri-
als of T cells engineered to attack cells expressing a protein called 
MAGE-A3. This protein is expressed only in embryos and in some 
cancer cells in adults, so it seemed an ideal target. But researchers later 
learned that the T cells attacked similar proteins present in the heart 
and brain. “These T cells are professional killers,” says Arie Belldegrun, 
chief executive at Kite. “If their target is expressed even in minute 
quantities on normal cells, these super killers are going to find those 
cells and destroy them.” 

In response to the deaths, ImmunoCore, an immunotherapy 
company based in Abingdon, UK, developed new bioinformatic meth-
ods to search for signs that any possible T-cell target could be expressed 
in normal tissue. The company also began to do its initial safety test-
ing in three-dimensional cell cultures that better reflected the cells’ 
natural environment. This approach has led to a collection of more 
than 20 potential targets for various cancers. Michel Sadelain, a cancer 
geneticist at Memorial Sloan Kettering, hopes to engineer T cells that 
target two proteins, both of which would have to be expressed on a cell 
for the T cells to destroy it. The idea, he says, is that the chance that a 
healthy cell will have both targets on its surface will be slim. 

Finding more targets could help immunotherapy to reach more types 
of cancer. So far, researchers have focused on melanoma and kidney 
cancer because they responded best to immunotherapies in early tri-
als, and are thought to be particularly visible to the immune system. 

Rosenberg says he is working on 11 clinical trials testing adoptive 
T-cell therapies against a variety of cancers, including a particularly 
lethal and rare form called mesothelioma. The door to much wider 
applications for cancer immunotherapies opened in 2012, when results 
showed that the checkpoint inhibitor nivolumab shrank tumours in 
18% of people with certain types of advanced lung cancer (S. L. Topa-
lian et al. N. Engl. J. Med. 366, 2443–2454; 2012). Because lung can-
cer is one of the world’s most prevalent forms of cancer, the results 
raised hopes that immunotherapy could make a sizeable dent in cancer 
deaths. “This was a cancer that we thought was not immunogenic,” says 
Ribas, who notes that both Yervoy and IL-2 failed to shrink lung-cancer 
tumours. “We thought immunotherapy wouldn’t have a chance.”

Some cancers, including liver cancer, may still pose a challenge to 
immunotherapy approaches, says Lisa Butterfield, a cancer researcher 
at the University of Pittsburgh in Pennsylvania. The liver processes 
pathogens and antigens in the blood, and the immune system is care-
fully controlled there to avoid prompting reactions that would target 
an individual’s normal cells. Breast, colorectal, pancreatic and ovarian 
cancers are also particularly adept at suppressing immune cells. Combi-
nation therapies may provide a way around these limitations, she says.

Combination therapies may also be the salvation of the cancer-
vaccine concept. Although the vaccines tested thus far have fared 
poorly, they may work synergistically with other immunotherapies, 
says Willem Overwijk, a cancer researcher at MD Anderson. 

After so many years of disappointing results, the growing excite-
ment over immunotherapy has surprised many cancer researchers and 
families touched by the disease. Since his own remarkable recovery, 
Gorman has mourned again and again as friends he made at melanoma 
support groups succumbed. Then, a few years ago, he had a new expe-
rience: a close friend was given Yervoy, and went into full remission. 

As for his own melanoma, Gorman goes for scans to look for new 
tumours every two years. In February, he noted that it might be time 
to schedule his next set of scans. But he wasn’t sure — he had stopped 
fearing his cancer’s return years ago. “I’m a cool cucumber now,” he 
says. “My immune system has it under control.” ■

Heidi Ledford reports for Nature from Boston, Massachusetts.
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Adoptive cell transfer

Administration of immune cells with anti-tumor, e.g., chimeric antigen
receptor (CAR) T cell therapy.
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‘Immune boost’). A trial using T cells engineered to target B cells wiped 
out cancer in 14 of 16 people with acute leukaemia (M. L. Davila et al. 
Sci. Transl. Med. 6, 224ra25; 2014). 

But technical challenges have limited the spread of T-cell transfer 
therapies. Only a handful of academic medical centres have performed 
the procedure so far. “After our initial results, we were besieged with 
melanoma patients,” says Rosenberg. “We couldn’t possibly treat all 
the patients sent to us.”

Since those early days, researchers have simplified and standardized 
protocols. That, plus the remarkable results in leukaemia, has lured 
industry investors. Novartis, based in Basel, Switzerland, has bought a 
facility in New Jersey to process T cells extracted from patients around 
the United States. The facility will be key to the company’s plans to 
expand its clinical trials to more sites this year. Smaller firms are fol-
lowing suit. In early 2015, Kite Pharmaceuticals in Santa Monica, 
California, hopes to launch a multicentre trial of adoptive T-cell trans-
fer in a form of lymphoma that kills around 37% of patients within five 
years of diagnosis. 

THE TRUE TARGET
Another big challenge for adoptive T-cell transfer is to broaden its 
reach by finding new molecular targets that will guide T cells to specific 
tumour types while sparing healthy cells. The approach works well in 
leukaemia and other cancers that affect B cells, another class of white 
blood cell, because researchers can engineer T cells to target a protein 
called CD19, which is found only on B cells. Although the treatment 
wipes out healthy B cells in addition to the cancerous ones, patients can 
tolerate that side effect relatively easily. But finding a similar target for 

solid tumours, which are less uniform than liquid tumours, has been 
difficult. “It’s a major limiting step,” says Ribas. “We’re all excited about 
CD19, but it’s not clear what the next target will be.”

Researchers are mining growing databases of gene expression to 
find the best candidates. But firing up immune responses to specific 
proteins can be dangerous: a few years ago, four patients died in tri-
als of T cells engineered to attack cells expressing a protein called 
MAGE-A3. This protein is expressed only in embryos and in some 
cancer cells in adults, so it seemed an ideal target. But researchers later 
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healthy cell will have both targets on its surface will be slim. 
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cancer because they responded best to immunotherapies in early tri-
als, and are thought to be particularly visible to the immune system. 

Rosenberg says he is working on 11 clinical trials testing adoptive 
T-cell therapies against a variety of cancers, including a particularly 
lethal and rare form called mesothelioma. The door to much wider 
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deaths. “This was a cancer that we thought was not immunogenic,” says 
Ribas, who notes that both Yervoy and IL-2 failed to shrink lung-cancer 
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pathogens and antigens in the blood, and the immune system is care-
fully controlled there to avoid prompting reactions that would target 
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cancers are also particularly adept at suppressing immune cells. Combi-
nation therapies may provide a way around these limitations, she says.

Combination therapies may also be the salvation of the cancer-
vaccine concept. Although the vaccines tested thus far have fared 
poorly, they may work synergistically with other immunotherapies, 
says Willem Overwijk, a cancer researcher at MD Anderson. 

After so many years of disappointing results, the growing excite-
ment over immunotherapy has surprised many cancer researchers and 
families touched by the disease. Since his own remarkable recovery, 
Gorman has mourned again and again as friends he made at melanoma 
support groups succumbed. Then, a few years ago, he had a new expe-
rience: a close friend was given Yervoy, and went into full remission. 

As for his own melanoma, Gorman goes for scans to look for new 
tumours every two years. In February, he noted that it might be time 
to schedule his next set of scans. But he wasn’t sure — he had stopped 
fearing his cancer’s return years ago. “I’m a cool cucumber now,” he 
says. “My immune system has it under control.” ■
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Response rate of cancer immunotherapy

Despite the success of cancer immunotherapy, only a small proportion of
patients respond to immunotherapy.
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Some potential biomarkers for cancer immunotherapy

PD1/PD-L1 expression for anti-PD1/PDL1 check point inhibitors.

Mutation load (the number of SNVs or indels) for check point
inhibitors.

Neoantigen: novel immunogenic peptides due to somatic mutations.
One may select neoantigen from all mutated peptides by asking
whether it is bound to MHC (major histocompatibility complex).
Intra-tumor heterogeneity [McGranahan et al. (2016) Science, 351(6280),

1463-1469].

Genome-wide load of somatic copy number alteration (SCNA) [Davoli

et al. (2017) Science, 355(6322), eaaf8399].

Different characteristics of tumor infiltrating immune cells, e.g., their
cell type proportions and cell type-specific expression.
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Intra-Tumor Heterogeneity

Tumor initiation and progression involves gradual evolution from
normal cells to cancer cells.

A group of passenger somatic mutations may be “attached” to a few
driver mutations within a group of tumor cells. Such group of tumor
cells sharing similar somatic mutations forms a subclone.

Nature Reviews | Cancer

Inter-tumour
heterogeneity

Intra-tumour
heterogeneity

Mixed dominanceDominance of clone 2Dominance of clone 1

Resistant phenotypes are not necessarily associated 
with genetic changes. In many cases, therapeutic resist-
ance can be linked to altered gene expression patterns 
without associated changes in DNA sequence80,81. A 
recent study demonstrated that drug resistance can be 
a consequence of a stochastic phenotype switch that can 
persist for multiple generations82. Whereas epigeneti-
cally mediated drug-resistant states are not strictly per-
manent, the stochastic nature of the transition and its 
heritability within therapeutically relevant time frames 
allows for the emergence of resistant clones owing to 
selection. However, phenotypes that are associated 
with non-genetic resistance can also be a consequence 
of stochastic heterogeneity. Populations of genetically 
identical cells in a homogeneous environment show 
substantial cell-to-cell variability in response to cyto-
toxic83 or ligand-based84 apoptotic stimuli. This vari-
ability has been linked to noise-driven variability in the 
expression levels of proteins that are involved in apop-
tosis. Interestingly, even this resistance mechanism can 
be heritable for a few population doublings, thereby 
providing a pool of resistant cells that can potentially 
acquire resistance via more stable genetic or epigenetic 
mechanisms.

In summary, both genetic and non-genetic sources of 
heterogeneity limit the ability of therapies to kill tumour 
cells, whereas clonal diversity feeds therapeutic relapse 
by the outgrowth of heritable genetic or epigenetic  
variants that are resistant to therapy.

Conclusions and future directions
In this Review, we have considered distinct sources of 
phenotypic heterogeneity in tumour cell populations. 
Tumour cell phenotypes are the result of the integra-
tion of inputs from genotype, environmental stimuli 
and stochastic processes that occur within cells (FIG. 2). 
Genetic and epigenetic changes that arise during onco-
genic transformation and tumour progression alter and 
diversify cellular phenotypes, posing a major obstacle 
to the understanding and clinical management of can-
cers. We suggest that the phenomenon of intra-tumour 
phenotypic heterogeneity, especially aspects that are 
related to clonal diversity, deserves to be recognized and 
accounted for during the analysis of primary tumours, 
building of experimental models and design of thera-
peutic approaches. Furthermore, because tumours 
contain phenotypically distinct populations of both 
tumour and stromal cells that interact in a dynamic and 
reciprocal manner, these interactions are likely to result 
in the emergence of networks of interactions the prop-
erties of which can be understood from an ecological 
perspective40,46,85,86.

How can intra-tumour heterogeneity be accounted 
for in our quest to understand and treat cancers? 
We see several major possibilities. First, it is worth 
interrogating whether intra-tumour phenotypic 
hetero geneity is linked to clinically important 
aspects of primary human cancers, such as subtype, 
prognosis, risk of metastases and therapeutic resist-
ance. Indeed, the degree of intra-tumour genetic 
heterogeneity has been associated with poor prog-
nosis in oesophageal cancer 65 and breast cancer 87. 
However, the subject remains mostly unexplored. 
Furthermore, given the major contribution of non-
genetic sources to phenotypic heterogeneity, it may 
be worth exploring the link between non-genetic  
phenotypic diversity and clinical outcomes.

Whereas the quantitative measures of clonal 
diversity can be adopted from other fields88, adequate 
methods allowing unbiased and cost-effective interro-
gation of tumours remain to be developed. Recent 
developments in sequencing technologies hold prom-
ise in this regard89. In addition, advances in the stud-
ies of clonal diversity will require the development 
and refinement of sampling techniques46. Although 
biologically and clinically relevant insights can be 
gained from the analysis of multiple spatially distinct 
regions of the same tumour without prior knowledge 
of clonal composition2, the application of methods 
that allow the separation of clonal populations before 
the analyses, such as fluorescence-activated cell 
sorting based on ploidy status10,90, can provide fur-
ther improvements in resolution. Multi-parameter 
high-throughput analysis at the single-cell level is 
the most desirable approach; however, despite suc-
cessful application of single cell-based analysis in 
several recent studies47,91,92, the widespread applicabil-
ity of this approach will require additional technical 
improvements.

Second, the intra-tumour heterogeneity of tumour 
cells, stromal cells and non-cellular components of 

Figure 4 | Tumour heterogeneity in diagnostics. Similar to inter-tumour 
heterogeneity, intra-tumour heterogeneity of cellular phenotypes that result from 
genetic and non-genetic influences can complicate definitive diagnostics and can 
obstruct therapeutic decision-making. First, spatial phenotypic heterogeneity  
can lead to a situation in which a biopsy does not provide an adequate reflection of  
the phenotypic composition of the whole tumour. Second, decisions made based on 
scoring the dominant phenotype in a given sample might be misleading if they do not 
account for minor subpopulations with clinically and biologically important distinct 
features.

REVIEWS

NATURE REVIEWS | CANCER  VOLUME 12 | MAY 2012 | 331

© 2012 Macmillan Publishers Limited. All rights reserved

Marusyk et al. (2012). Nature Reviews Cancer, 12(5), 323

Wei Sun (Biostatistics, Fred Hutch) Immunotherapy Jun 1st, 2018 10 / 25



Infer Intra-Tumor Heterogeneity for Association Analysis

It is important to jointly estimate the somatic point mutations and
somatic copy number alterations (SCNA) of each subclone. Many
methods have been developed for ITH estimation, but most of them are
not ideal for (large-scale) association studies because

Only study SCNAs

Can only be applied to regions without SCNA events

Assume SCNAs are known or are clonal

Are only applicable to the settings with multiple samples per patient

One exception is Canopy (Y Jiang, ..., & N Zhang, 2016, PNAS, 113 (37)

E5528-E5537). Canopy is mainly designed for multiple sample study.

We have developed a new method named SHARE (Statistical method for
Heterogeneity using Allele-specific REads and somatic point mutations).
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How to quantify ITH.

Assume there there are 3 subclones. Consider two examples of subclone
proportions (the proportion of cells belonging to each subclone)

1%, 49%, 50%

30%, 32%, 38%

We may quantify ITH using the number of subclones, but then the
information of subclone proportions is lost. If we have to use the number
of subclones, the first example is better to be considered as two subclones
instead of three.

We propose to use an entropy measurement: −∑S
s=1 ϑs logϑs , where S is

the number of subclones, and ϑs is the proportion of tumor cells in the
s-th subclone.
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Survival Analysis in TCGA Kidney Cancer
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Immunotherapy
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Immunotherapy: Anti-PD1 in melanoma patients
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Estimation of immune cell composition
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ICeD-T
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ICeD-T (Immune Cell Deconvolution in Tumor tissues)

Assume a regression based framework with gene expression from a
tumor sample as response (sample size is the number of genes) and
gene expression of each cell type as covariates. The regression
coefficients are proportional to cell type proportion.

Gene expression needs to be log-transformed to stabilize variance, but
regression should be conducted using un-transformed expression.

Model gene expression using log-normal distribution.

ICeD-T automatically identifies aberrant genes whose expression are
inconsistent with the deconvolution model and down-weights their
contributions to cell type abundance estimates.

A mixture model to separate the genes into two groups: aberrant genes
and consistent genes.
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Association analysis for immune cell composition

We may associate the proportion of each cell type with a response
variable, but it is also desirable to consider all cell types together.

Account for similarities across cell types.
Borrow information of weak associations across cell types.

Analogous to microbiome studies that use phylogenetic tree of
bacteria, we model the dependence of immune cell types using a cell
lineage tree, and calculate distance of two samples using the tree.

Association testing

If cell type composition are covariates, we may fit a mixed effect model
(kernel based model), using similarity defined by cell type composition
to specify covariance structure.
If cell type composition are responses, we use a distance-based
regression, i.e, to assess whether subjects with more similar cell type
composition also have similar covariate values.
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Cell lineage tree
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Cell lineage tree

Given a immune cell lineage tree, generalized UniFrac distance between
two samples, indexed by i and j is defined as:

∑n
l=1 bl(pil + pjl)α∣ (pil−pjl)(pil+pjl)

∣
∑n

l=1 bl(pil + pjl)α
,

where

l indexes branches

pil and pjl denote the proportion of immune cells descending from branch l for
samples i and j

The branch length bl is calculated based on gene expression of purified immune
cells.

α varies from 0 to 1, to adjust for the relative contribution from the immune cells
with larger proportions.

Chen, J., ... & Li, H. (2012). Bioinformatics, 28(16), 2106-2113.
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Use immune cell composition to predict survival time in
colon cancer patients
We use kernels defined by immune cell composition to fit mixed effect
model with survival outcome. Randomly split the data with 2/3 of the
samples as training data and 1/3 as testing data.
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Summary

Omic data-based biomarkers for cancer immunotherapy.

DNA level data

Intra-tumor heterogeneity (ITH) and SCNA: SHARE, Canopy etc.
Neoantigen prediction: deep-learning, neural network, Python...
ITH of Neoantigen
To combine multiple features into one model

Gene expression data

Immune cell composition estimation: ICeD-T, CyberSORT, TIMER etc.
Association with immune cell composition
Cell type-specific differential expression using bulk or scRNA-seq data
from tumor samples. For example, to whether C8+ T cells in
non-responding patients are more exhausted.
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